THE STRUCTURE OF ATOMS

F321

ATOMS Atoms consist of a number of fundamental particles, the most important are ...

	Mass / kg	Charge / C	Relative mass	Relative Charge
PROTON				
NEUTRON				
ELECTRON				

MASS NUMBER & ATOMIC NUMBER

Atomic Number (Z)Number of protons
in the nucleus of an atom

Mass Number (A)

Sum of the protons and neutrons

Mass number (protons + neutrons) Na 11 Atomic number (protons)

	in the nucleus	

<i>Q.1</i>		Protons	Neutrons	Electrons	Charge	Atomic No.	Mass No.	Symbol
	Α	19	21	19				
	В	20			Neutral		40	
	С				+	11	23	
	D	6	6		Neutral			
	Е	92			Neutral		235	
	F	6		6			13	
	G		16		2-	16		
	Η							²⁷ Al ³⁺

Relative Atomic Mass (A_r) The mass of an atom relative to the ¹²C isotope having a value of 12.000 $A_r = average mass per atom of an element \times 12$ mass of one atom of carbon-12

Relative Isotopic Mass	Similar, but uses the mass of an isotope	²³⁸ U
Relative Molecular Mass (M _r)	Similar, but uses the mass of a molecule	CO ₂ , N ₂
Relative Formula Mass	Used for any formula of a species or ion	NaCl, OH⁻

1

F321

ISOTOPES

DefinitionAtoms with ... the same atomic number but different mass numberorthe same number of protons but different numbers of neutrons.

- Properties Chemical properties of isotopes are identical
- Theory Relative atomic masses measured by chemical methods rarely produce whole numbers but they should do (allowing for the low relative mass of the electron). This was explained when the mass spectrograph revealed that **atoms of the same element could have different masses** due to the **variation in the number of neutrons** in the nucleus. The observed mass was a consequence of the abundance of each type of isotope.

	Р	N
$^{1}_{1}H$	1	0
² ₁ H	1	1
³ ₁ H	1	2

Example There are two common isotopes of chlorine.

Calculate the average relative atomic mass of chlorine atoms

	Р	Ν	%
³⁵ ₁₇ CI	17	18	75
³⁷ ₁₇ CI	17	20	25

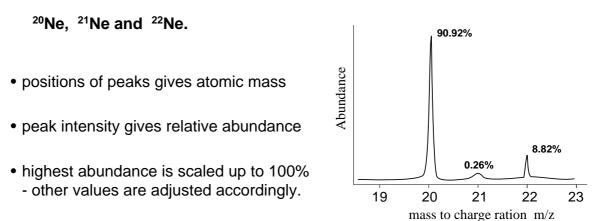
Method 1 Three out of every four atoms will be chlorine-35

 $Average = \frac{35 + 35 + 35 + 37}{4} = 35.5$

Method 2 Out of every 100 atoms 75 are ³⁵Cl 25 are ³⁷Cl

Average = $(75 \times 35) + (25 \times 37) = 35.5$ 100

Q.2 Calculate the average relative atomic mass of sulphur from the following isotopic percentages... ³²S 95% ³³S 1% ³⁴S 4%


Q.3 Bromine has isotopes with mass numbers 79 and 81. If the average relative atomic mass is 79.908, calculate the percentage of each isotope present. Need help:- See example calculation on the next page

2

Mass spectra

An early application was the demonstration by Aston, (Nobel Prize, 1922), that naturally occurring neon consisted of three isotopes ...

F321

CALCULATIONS

Example 1 Calculate the average relative atomic mass of neon using the above information.

Out of every 100 atoms 90.92 are ${}^{20}Ne$, 0.26 are ${}^{21}Ne$ and 8.82 are ${}^{22}Ne$ Average = $(90.92 \times 20) + (0.26 \times 21) + (8.82 \times 22) = 20.179$ 100 Ans. = 20.18

Example 2 Naturally occurring potassium consists of potassium-39 and potassium-41. Calculate the percentage of each isotope present if the average is 39.1.

Assume there are x nuclei of 39 K in every 100; there will then be (100-x) of 41 K.

so $\frac{39x + 41(100-x)}{100} = 39.1$ therefore 39x + 4100 - 41x = 3910

thus -2x = -190 so x = 95 ANSWER **95%** ³⁹K and **5%** ⁴¹K

Q.4 Calculate the average relative atomic mass of an element producing the following peaks in its mass spectrum...

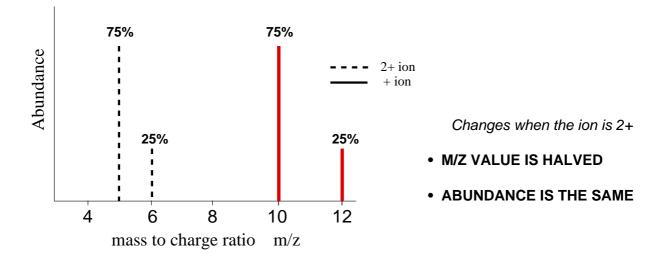
m/z	62	63	64	65
Relative intensity	20	25	100	5

Mass spectra can also be used to find the relative molecular mass of compounds

3

MASS SPECTROMETER

A mass spectrometer consists of ... an ion source, an analyser and a detector.



Ion source • gaseous atoms are bombarded by electrons from a gun and are IONISED

- sufficient energy is given to form ions of 1+ charge
- resulting ions can be ACCELERATED out of the ion source by an electric field

Analyser • charged particles will be **DEFLECTED** by a magnetic or electric field

- the radius of the path depends on the value of their mass/charge ratio (m/z)
- ions of heavier isotopes with larger m/z values follow a larger radius curve
- as most ions are singly charged (1+), the path depends on their mass
- if an ion acquires a 2+ charge it will be deflected more; its m/z value is halved

Detector by electric or photographic DETECTION methods
mass spectra record the mass/charge values
relative abundance of each ion

and

F321

ANSWERS TO QUESTIONS

F321

9[.]89 **7**.0

%7.97 JA 18 %9.75 JA 62 & 60

67.78 **Z.Q**

I'Õ

	1		I.		1		
$^{27}\text{Al}^{3+}$	72	13	3+	01	۲L	13	н
₃₅ 8 ₅₋	32	91	5-	81	9۱	91	อ
Ο _{ει}	13	9	Neutral	9	L	9	н
S32 ∩	535	26	Neutral	26	143	26	Э
٦sı	15	9	Neutral	9	9	9	۵
²³ Na ⁺	53	۱۱	+	01	15	11	С
ьĴ ⁰⁴	40	50	Neutral	50	50	50	в
A ⁰⁴	40	61	Neutral	61	51	61	A
		.oN					
lodmy2	.oV sseM	simotA	ЭвленЭ	Electrons	suontueM	Protons	

____ 5